Abstract

Semianalytical methods, such as rigorous coupled wave analysis, have been pivotal in the numerical analysis of photonic structures. In comparison to other numerical methods, they have a much lower computational cost, especially for structures with constant cross-sectional shapes (such as metasurface units). However, when the cross-sectional shape varies even mildly (such as a taper), existing semianalytical methods suffer from high computational costs. We show that the existing methods can be viewed as a zeroth-order approximation with respect to the structure's cross-sectional variation. We derive a high-order perturbative expansion with respect to the cross-sectional variation. Based on this expansion, we propose a new semianalytical method that is fast to compute even in the presence of large cross-sectional shape variation. Furthermore, we design an algorithm that automatically discretizes the structure in a way that achieves a user-specified accuracy level while at the same time reducing the computational cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call