Abstract We study the impact of uncertain precipitation estimates on simulated streamflows for the poorly gauged Yarlung Tsangpo basin (YTB), high mountain Asia (HMA). A process-based hydrological model at 0.5-km resolution is driven by an ensemble of precipitation estimation products (PEPs), including analyzed ground observations, high-resolution precipitation estimates, climate data records, and reanalyses over the 2008–15 control period. The model is then forced retrospectively from 1983 onward to obtain seamless discharge estimates till 2007, a period for which there is very sparse flow data coverage. Whereas temperature forcing is considered deterministic, precipitation is sampled from the predictive distribution, which is obtained through processing PEPs by means of a probabilistic processor of uncertainty. The employed Bayesian processor combines the PEPs and outputs the predictive densities of daily precipitation depth accumulation as well as the probability of precipitation occurrence, from which random precipitation fields for probabilistic model forcing are sampled. The predictive density of precipitation is conditional on the precipitation estimation predictors that are bias corrected and variance adjusted. For the selected HMA study site, discharges simulated from reanalysis and climate data records score lowest against observations at three flow gauging points, whereas high-resolution satellite estimates perform better, but are still outperformed by precipitation fields obtained from analyzed observed precipitation and merged products, which were corrected against ground observations. The applied methodology indicates how missing flows for poorly gauged sites can be retrieved and is further extendable to hydrological projections of climate. Significance Statement We show how to use different precipitation estimates, like computer simulations of weather or satellite observations, in conjunction with all available ground measurements in regions with generally poor meteorological and flow measurement infrastructure. We demonstrate how it is possible to retrieve past unobserved river flows using these estimates in combination with a hydrological computer model for streamflow simulations. The method can help us to better understand the hydrology of poorly gauged regions that play an important role in the distribution of water resources and can be affected by future changes. We applied the method to a large transboundary river basin in China. This basin holds water needed by large, densely populated regions of India that may become water constrained by warmer climate.
Read full abstract