Abstract

The management of LULC changes in transboundary river basins continues to challenge water resources managers due to the differences in development and conservation priorities of the countries sharing the basin. While various watershed models (WMs) exist to support decision making, basin-wide sustainable application of the instituted WM depends on the management priorities, resources, data availability, and knowledge gaps at national and sub-basin levels. Building on the results of our prior comparative analysis of WMs for a large transboundary river basin, we applied the ‘Source’ model to the Lower Mekong Basin (LMB). The constructed LMB-Source model was evaluated based on its streamflow and instream total suspended solids (TSS) and nitrate loads simulative performances. A combination of predictive performance metrics (PPMs) and sophisticated hydrologic signatures were used to calibrate model parameters and diagnose the model performance. Calibration results indicated strong similarity between the simulated and observed time series data and were further confirmed by the validation results. The successful model calibration generated parameters that represent hydrologic response characteristics (HRCs) and overland TSS and nitrate generation and removal dynamics (GRDs) previously not available for the LMB. The HRCs and GRDs can be regionalised with physical attributes of the LMB in future studies which can be used to support the management of ungauged sub-basins. This study confirms Source's capability as a decision support tool for the management of transboundary river basins, and provides basin-specific values of HRCs and GRDs that can be used for a better evaluation of the potential effects of LULC changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call