Gaze-tracking, where the point of regard of a subject is mapped onto the image of the scene the subject sees, can be employed to study the visual attention of the users of prosthetic hands. It can show whether the user pays greater attention to the actions of their prosthetic hand as they use it to perform manipulation tasks, compared with the general population. Conventional analysis of the video data requires a human operator to identify the key areas of interest in every frame of the video data. Computer vision techniques can assist with this process, but fully automatic systems require large training sets. Prosthetic investigations tend to be limited in numbers. However, if the assessment task is well-controlled, it is possible to make a much simpler system that uses the initial input from an operator to identify the areas of interest and then the computer tracks the objects throughout the task. The tool described here employs colour separation and edge detection on images of the visual field to identify the objects to be tracked. To simplify the computer’s task further, this test uses the Southampton Hand Assessment Procedure (SHAP) to define the activity spatially and temporarily, reducing the search space for the computer. The work reported here concerns the development of a software tool capable of identifying and tracking the points of regard and areas of interest throughout an activity with minimum human operator input. Gaze was successfully tracked for fourteen unimpaired subjects and was compared with the gaze of four users of myoelectric hands. The SHAP cutting task is described and the differences in attention observed with a greater number of shorter fixations by the prosthesis users compared to unimpaired subjects. There was less looking ahead to the next phase of the task by the prosthesis users.