Abstract
Virtual screening can accelerate drug discovery by identifying promising candidates for experimental evaluation. Machine learning is a powerful method for screening, as it can learn complex structure–property relationships from experimental data and make rapid predictions over virtual libraries. Molecules inherently exist as a three-dimensional ensemble and their biological action typically occurs through supramolecular recognition. However, most deep learning approaches to molecular property prediction use a 2D graph representation as input, and in some cases a single 3D conformation. Here we investigate how the 3D information of multiple conformers, traditionally known as 4D information in the cheminformatics community, can improve molecular property prediction in deep learning models. We introduce multiple deep learning models that expand upon key architectures such as ChemProp and SchNet, adding elements such as multiple-conformer inputs and conformer attention. We then benchmark the performance trade-offs of these models on 2D, 3D and 4D representations in the prediction of drug activity using a large training set of geometrically resolved molecules. The new architectures perform significantly better than 2D models, but their performance is often just as strong with a single conformer as with many. We also find that 4D deep learning models learn interpretable attention weights for each conformer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.