현장 지반에는 점토 또는 모래만 존재하기 보다는 다양한 크기의 흙이 서로 섞여 존재하는 경우가 많다. 본 연구에서는 이와 같이 모래가 포함된 점토에서 함수비 증가에 따른 흙의 유동 특성을 예측하기 위해 흙기둥 붕괴실험과 이를 위해 개발한 입자법으로 대변형 시뮬레이션을 실시하였다. 먼저 카올리나이트에 모래 함유량을 0, 10, 25, 그리고 50%까지 증가시키면서 직경 7cm, 높이 13cm의 흙기둥 붕괴실험을 실시하였으며, 시간에 따른 흙기둥의 형상 변화를 관찰하였다. 모래 함유량이 다른 각각의 흙기둥에 함수비를 40, 60, 그리고 80%로 증가시키면서 총 12 종류의 흙기둥 붕괴실험을 실시하였으며, 본 연구에서 개발한 입자법으로 시간에 따른 흙기둥의 변화를 시뮬레이션하였다. 점토의 함수비와 모래 함유량에 따른 비배수전단강도와 소성지수의 변화를 고려한 최대소성전단계수를 입자법의 점성항에 적용하여 토사 대변형을 시뮬레이션하였다. 실험 결과 모래 함유량이 동일한 경우 함수비가 증가할수록 변형이 크게 발생하였으며, 동일한 함수비라도 모래 함유량이 증가함에 따라 흙기둥의 변형은 크게 발생하였다. 최대 변형은 함수비 80%, 모래 함유량 50%인 흙기둥의 직경이 7cm에서 22cm로 3배 이상 발생하였으며, 이와 같은 흙기둥 실험에서 관찰된 토사의 대변형 거동 및 응력 변화를 개발한 입자법이 비교적 잘 예측할 수 있었다. Clay or sand does not exist alone but various sizes of soil are mixed in the field. In this study, the effect of water content on large deformation of such mixed soils is studied by using soil column tests and a particle method. A soil column with 7 cm in diameter and 13 cm in height, which was made out of kaolinite with sand content of 0, 10, 25, or 50%, was tested for large deformation. Its deformation was monitored with time. While increasing its water content from 40, 60, to 80%, a total of 12 types of soil column tests were carried out. The particle method simulated their deformation with time. A maximum plastic shear modulus, which was a function of undrained shear strength and plasticity index for soils with different water contents, was associated with soil viscosity to simulate large deformation of soil column. When a sand content of soil column was constant, the deformation of soil column increased with increasing water content. When a water content of soil column was constant, large deformation occurred with increasing the sand content. The maximum deformation, which was 22 cm in diameter, was observed in the case of water content of 80% and sand content of 50%. The particle method was able to relatively well simulate such large deformation and stress change of soils.