Abstract

The piezocone penetration test (CPTU) is commonly used as a fast and economical tool to identify soil profile and to estimate relevant material properties in soils ranging from fine to coarse-grained. Moreover, in the case of fine-grained soils (clays and silts), the consolidation coefficient and the permeability can be estimated through the dissipation test. Undrained conditions are commonly assumed for the interpretation of CPTU in fine-grained soils, but in soils such as silts, penetration may occur in partially drained conditions. This aspect is often neglected in data interpretation thus leading to an inaccurate estimate of soil properties. This paper investigates numerically the effect of partial drainage during penetration on the measured tip resistance and the subsequent pore pressure dissipation response contributing to a more accurate interpretation of field data. A realistic simulation of the cone penetration is achieved with the two-phase Material Point Method, modelling the soil response with the modified Cam-Clay model. The approach takes into account large soil deformations induced by the advancing cone, soil–water, and soil–structure interactions, as well as nonlinear soil behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.