Biotelemetry has many advantages for monitoring fish behaviour. However, the accuracy of results can be impacted by changes in fish behaviour following tagging and other forms of human intervention. Different fish take different amounts of time to return to normal behaviour patterns. This recovery period is often difficult to assess. In many studies, it is simply ignored, while in others an assumed duration is used. This assumption is rarely based on objective criteria. To address this challenging aspect of fish telemetry, a multi-criteria stepwise approach was developed based on complementary criteria obtainable through prior knowledge of the normal behaviour of studied species (home range, diel rhythm, homing, shoaling, migration…). It was applied to the case study of an acoustic telemetry project in the Seine Estuary (France) for three estuarine species exhibiting contrasted ecological traits: European eel Anguilla anguilla (Linnaeus 1758), thin lipped grey mullet Liza ramada (Risso 1827) and bream Abramis brama (Linnaeus 1758). Taking into account the particular traits of the species studied, we used the following three criteria: time to return to core area of activity, time to return to rhythmic activity, and time to return to site of capture. Post-release periods of recovery varied greatly between species. The median value was 10 days for eel, 25 days for mullet, and 1 day for bream. During this period, eels moved very little and the schedule pattern presented a diel rhythm with most detections occurring at night. All mullet exhibited rapid downstream trajectories after release, with larger distances covered during the ebb. Only five individuals returned later to the study site. This behaviour turns out to be not only an effect of post-release stress, but also the result of normal shifts in feeding habitat use by large shoals of mullet. Common bream exhibit very short periods of recovery with strong site fidelity. Most of the individuals of the different species (72%) return to their site of capture. The approach allows the identification of individual periods of recovery specific to the species and environment being studied. It maximises the amount of conserved data representing normal behaviour and can be implemented with various types of tracking data. Analysis of this period provides additional information about the stress response of species and their associated behaviour.