Smart warehouses are revolutionizing traditional logistics operations by incorporating advanced technologies such as Internet of Things, robotics, and artificial intelligence. In these complex and dynamic environments, control and operation instructions need to be transmitted through wireless networks. Therefore, wireless communication plays a crucial role in enabling efficient and reliable operations. Meanwhile, channel measurements and modeling in smart warehouse scenarios are essential for understanding and optimizing wireless communication performance. By accurately characterizing radio channels, communication systems can be better designed and deployed to meet unique challenges in smart warehouse scenarios. In this paper, we present an overview of smart warehouse scenarios and explore channel characteristics in smart warehouse scenarios. We conducted a measurement campaign for millimeter wave radio channels in smart warehouse scenarios. A vector network analyzer-based channel sounder was exploited to record channel characteristics at 28 GHz. Based on the measurements, large-scale channel parameters, including path loss, root-mean-square (RMS) delay spread, and Rician K factor were investigated. The unique channel characteristics in smart warehouse scenarios were explored.