We describe patterns of acquired portal collateral circulation in dogs and in a cat using multidetector row computed tomography angiography. Large portosystemic shunts included left splenogonadal shunts in patients with portal hypertension. Small portal collaterals were termed varices; these collaterals had several patterns and were related either to portal vein or cranial vena cava obstruction. Varices were systematized on the basis of the venous drainage pathways and their anatomic location, namely left gastric vein varix, esophageal and paraesophageal varices, gastroesophageal and gastrophrenic varices, gallbladder and choledocal varices, omental varices, duodenal varices, colic varices, and abdominal wall varices. As reported in humans and in experimental dog models, esophageal and paraesophageal varices may result from portal hypertension that generates reversal of flow, which diverts venous blood in a cranial direction through the left gastric vein to the venous plexus of the esophagus. Blood enters the central venous system through the cranial vena cava. Obstructions of the cranial vena cava can lead to esophageal and paraesophageal varices formation as well. In this instance, they drain into the azygos vein, the caudal vena cava, or into the portal system, depending on the site of the obstruction. Gallbladder and choledocal varices, omental varices, duodenal varices, phrenico-abdominal varices, colic varices, abdominal wall varices drain into the caudal vena cava and result from portal hypertension. Imaging plays a pivotal role in determining the origin, course, and termination of these vessels, and the underlying causes of these collaterals as well. Knowledge about these collateral vessels is important before interventional procedures, endosurgery or conventional surgery are performed, so as to avoid uncontrollable bleeding if they are inadvertently disrupted.