Crop classification is an important part of crop management and yield estimation. In recent years, neural networks have made great progress in synthetic aperture radar (SAR) crop classification. However, the insufficient number of labeled samples limits the classification performance of neural networks. In order to solve this problem, a new crop classification method combining geodesic distance spectral similarity measurement and a one-dimensional convolutional neural network (GDSSM-CNN) is proposed in this study. The method consisted of: (1) the geodesic distance spectral similarity method (GDSSM) for obtaining similarity and (2) the one-dimensional convolutional neural network model for crop classification. Thereinto, a large number of training data are extracted by GDSSM and the generalized volume scattering model which is based on radar vegetation index (GRVI), and then classified by 1D-CNN. In order to prove the effectiveness of the GDSSM-CNN method, the GDSSM method and 1D-CNN method are compared in the case of a limited sample. In terms of evaluation and verification of methods, the GDSSM-CNN method has the highest accuracy, with an accuracy rate of 91.2%, which is 19.94% and 23.91% higher than the GDSSM method and the 1D-CNN method, respectively. In general, the GDSSM-CNN method uses a small number of ground measurement samples, and it uses the rich polarity information in multi-temporal fully polarized SAR data to obtain a large number of training samples, which can quickly improve the accuracy of classification in a short time, which has more new inspiration for crop classification.