Abstract
An efficient knowledge-based artificial neural network (KBANN) is proposed, and it is used for the design of circularly polarized (CP) lens antenna in this article. In this KBANN, forward neural network (FNN) and inverse neural network (INN) are included. In this model, INN is the major component to predict the antenna structure parameters. As multiple performance indices are required, INN requires a large number of training samples to deduce complex mapping relationship. To solve this problem, FNN is introduced to provide prior knowledge for INN. FNN generates a huge training dataset for INN training, and then the trained INN can directly output the geometric parameters by feeding the target electromagnetic responses as input. This article solves the problem of multiple performance indices in antenna design, and a CP lens antenna with wideband, good axial ratio, and high gain is designed and fabricated to verify the effectiveness of the KBANN model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.