Recently, a number of large molybdenum (-copper) deposits have been discovered successively in the Laba area, Shangri-La county, northwestern Yunnan province. The investigation confirmed that there is a superlarge porphyry-skarn hydrothermal vein type molybdenum-polymetallic- metallogenic system with the total prediction reservoir of more than 150 mt molybdenum. The porphyry intrusions contributed to the mineralization closely, the superficial little vein molybdenum (-copper, lead, silver) ore-bodies are usually located in faults and fractures, and the deep porphyry type ore-bodies occurred in the granodiorite porphyries, the skarn type ore-bodies occurred in the contact zone intrused into Triassic limestone or Permian basalts. Laba ore block is a new exploration area with great prospecting potential. In order to reduce the target area and guide the further exploration work, the magnetic method measurement about 3.3 square kilometres was carried out in the ore field. This paper presents an application of analyzing the horizontal and vertical derivative, using Fast Fourier Transform (FFT) filter (FFT high-pass, low-pass, cosine roll-off, suscepbility), calculated spectra frequency energy to predict the depth and intensity of the apparent remanence magnetization of source (Hilbert). The calculated results and magnetic anomalous show that the remanence anomaly is caused by the intrusions into the Triassic limestone and Permian basalts with small anomalies, and the depth of located source is not great. We have identified a number of positions to the three drilled well, the drilled result specify interpretation with very high accuracy. The magnetic method is helpful to identify porphyry mineralization, and judge the shape and depth of the concealed ore-bearing intrusive bodies under the similar geological condition.
Read full abstract