Abstract

A Ni-Al-Mo directionally solidified (DS) casting γ-base superalloy, with the chemical composition (wt%) 7.5 to 8.5% Ni, 10 to 14% Al, Mo ≤0.15% B, has been developed for advanced gas turbine blades and vanes. The mechanical properties of this alloy have been determined by tensile tests at room temperature and in the temperature range 700 to 1000 °C and by stress-rupture tests in the temperature range 760 to 1100 °C. The microstructures of the as-cast and homogenized specimens and of specimens after creep de-formation at 1000 to 1100 °C have been examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and optical microscopy techniques. The results show that this alloy has a high yield strength from room temperature up to 1100 °C, excellent creep resistance at temperatures up to 1100 °C, as well as a lower density and higher melting point than currently available nickel superal-loys. The microstructural observations and analysis indicate that the superior mechanical properties of this alloy may be attributed to solid solution hardening by the large molybdenum addition, second-phase strengthening by y phase and other minor phases that precipitate in various temperature ranges, the for-mation of a γ raft structure during creep, and to the existence of high-density misfit dislocation networks at γ / γ interface areas due to a high value of γ / γ misfit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.