An enhanced nonlinear optical (NLO) performance was observed in Se-doped MoS2 nanosheets synthesized through a facile annealing process. Se-doped MoS2 nanosheets with a large saturable intensity and high modulation depth generated stable passively Q-switched fiber laser pulses at 1559 nm. In comparison with the Q-switched fiber laser utilizing the pristine MoS2 nanosheets as a saturable absorber, the passive Q-switching operation based on Se-doped MoS2 nanosheets could be conducted at a lower threshold power of 50 mW, a wider range of repetition rates from 28.97 to 130 kHz, and a higher SNR of 56 dB. More importantly, the shortest pulse duration of 1.502 μs was realized and the output power and pulse energy reached 17.2 mW and 133.07 nJ, respectively. These results indicate that tailoring the chemical composition of optical nanomaterials by introducing a dopant is a feasible method of improving the NLO response of the MoS2 nanosheets and realizing excellent ultrafast pulse generation.
Read full abstract