An intracellular pool of Na channel alpha subunits has been detected in developing brain cells in vivo and in vitro by phosphorylation with cAMP-dependent protein kinase, immunoprecipitation with specific antiserum, and NaDodSO4 gel electrophoresis or by radioimmunoassay. These alpha subunits are membrane-bound, contain complex carbohydrate chains, and have an apparent molecular weight of 260,000 like mature alpha subunits. In contrast to mature alpha subunits, the intracellular subunits are not covalently attached to a beta 2 subunit, and they do not bind saxitoxin with high affinity. They comprise 67-77% of the total immunoreactive alpha subunit in developing rat brain cells but are not a prominent component in the adult brain. It is proposed that this intracellular pool of alpha subunits forms a ready reserve of preformed subunits for incorporation into the surface membrane during periods of active membrane biogenesis. The results suggest that disulfide linkage of the alpha and beta 2 subunits, insertion into the cell surface membrane, and attainment of a functional conformation are closely related late events in the biogenesis of the Na channel. These processes may regulate the number of functional Na channels in the developing brain.
Read full abstract