Generation is shifting from a centralized power generating facility having large synchronous generators to distributed generation involving sources of smaller capacity. Most of these sources require inverters on the front end while being connected to the grid. Lower available kinetic energy, coupled with less short-circuit current ratio compared to large synchronous generators, compromises the transient stability of the microgrid when isolated from the main grid. Sources in the microgrid use droop control to share power according to their capacity without any form of communication. This paper proposes a novel controller for inverters to improve the frequency response of microgrid under disturbances involving large frequency deviations. It also discusses design of various parameters defined for the proposed control. The microgrid, which has two inverters and two synchronous generators, is simulated using Simulink/MATLAB software to test the proposed control strategy.