In this paper a space-averaged Navier–Stokes approach was deployed to Modified Wavemaker Boundary condition for a numerical wave tank. The developed model is based on the smoothed particle hydrodynamic (SPH) method which is a pure Lagrangian approach and can handle large deformations of the free surface with high accuracy. In this study, the large eddy simulation (LES) turbulent model was coupled with the weakly compressible version of the smoothed particle hydrodynamics (WCSPH) method to Modified Wavemaker Boundary condition for a numerical wave tank. An absorbing wavemaker boundary condition was developed to absorb the second reflecting waves from the wavemaker. The capacity of absorbing secondary reflecting waves and incoming waves in absorbing wavemaker was validated through comparisons of the numerical results with general wavemaker.