In the process of long-distance and large-diameter pipe jacking, thixotropic mud is generally injected into the outer surface of the pipe wall to reduce the frictional resistance between the pipe and the soil. The process of pipe jacking may be stopped due to various reasons such as pipe rupture and equipment damage. When the pipe is restarted after being stopped for a period of time, the interface mechanical properties usually change substantially, resulting in a substantial increase in frictional resistance compared to before the stop. However, the mechanical properties and shear mechanism of the pipe-soil interface after jacking is restarted have not been sufficiently investigated. In this paper, a series of gravelly sand-concrete direct shear tests are carried out, in which lubricant is injected into the interface between gravelly sand and concrete, and the effect of construction stagnation time is considered. The mechanical properties of the interface when the concrete pipe is restarted after stagnation is studied by the direct shear tests. The results show that the friction coefficient of pipe-soil interface increases with the stagnation time, which is determined by the thixotropic mud state and the content of gravelly sand involved in shear. In a short period of stagnation, the friction coefficient is determined by the cohesion caused by thixotropic mud and the friction angle produced by the gravelly sand involved in the shearing action. With the increase of stagnation time, the friction angle gradually becomes the decisive factor for the increase of friction coefficient.