Abstract

Most of the existing flow sensors are expensive and limited in their capabilities for sensing bidirectional flow. Low-cost and accurate flow sensors with bidirectional sensing capability have numerous applications in the residential and irrigation sectors. Evaluation of a low-cost, cantilever-based sensor, suitable for measuring flow rates under turbulent flow conditions is presented in this article. Such sensors are reported for micro-fluidic applications but its potential application in large diameter pipes under turbulent flow has not been studied yet. A cantilever formed using a thin stainless-steel strip is used as the sensing element in the proposed sensor. One of the ends of the cantilever is firmly fitted to the inner wall of the pipe, and it bends or deflects towards the direction of the flow as a function of the flow rate. To experimentally evaluate the sensor in detail, the mean deflection angle of the cantilever is measured using a camera, and an image processing algorithm. In practice, the angle can be sensed using simpler methods. The performance of the prototype sensor has been evaluated after building an appropriate regression model. The results are subsequently expressed in terms of the mean flow velocity, thereby providing its potential utility in pipes of other dimensions. The shape of the mean flow velocity with respect to the mean angle of deflection characteristic of the proposed sensor matched well with the theoretical deflection computed. The sensor developed has given an accuracy of 3 % of full scale, for flow rates in the range of 2–15.5 m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> /hr. The proposed sensing mechanism can realize cost-effective, simple, and reliable flow sensors. Such sensors will find applications in residential and industrial domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.