Klebsiella pneumoniae is an opportunistic and environmental mastitis-causing pathogen, with potential for contagious transmission. Repetitive element sequence-based PCR was used to determine genetic diversity and explore potential transmission and reservoirs for mastitis caused by K. pneumoniae on 2 large Chinese dairy farms. A total of 1,354 samples was collected from the 2 dairy farms, including milk samples from cows with subclinical and clinical mastitis, bedding, feces, feed, teat skin, and milking liners. Environmental samples were collected from all barns and milking parlors and extramammary samples from randomly selected dairy cows on both farms. In total, 272 and 93 K. pneumoniae isolates were obtained from Farms A and B, respectively (with ~8K and 2K lactating cows, respectively). Isolation rates from clinical mastitis (CM), subclinical mastitis (SCM), and environmental or extramammary samples were 34, 23 and 37%, respectively for Farm A and 42, 3, and 34% for Farm B. The K. pneumoniae isolated from CM milk and extramammary or environmental sources had high genetic diversity (index of diversity >90%) on the 2 farms and from SCM on Farm A. However, on Farm B, 9 SCM isolates were classified as 2 genotypes, resulting in a relatively low index of diversity (Simpson's index of diversity = 0.39; 95% CI = 0.08-0.70). Genotypes of K. pneumoniae causing mastitis were commonly detected in feces, bedding, and milking liners (Farm A), or from teat skin, sawdust bedding, and feed (Farm B). Based on its high level of genetic diversity, we inferred K. pneumoniae was an opportunistic and environmental pathogen causing outbreaks of CM on these 2 large Chinese dairy farms. Nevertheless, that only a few genotypes caused SCM implied some strains had increased udder adaptability and a contagious nature or a common extramammary source. Finally, control of intramammary infections caused by K. pneumoniae on large Chinese dairy farms must consider farm-level predictors, as the 2 outbreaks had distinct potential environmental sources of infection.
Read full abstract