Textile-reinforced composites such as glass fibre-reinforced polymer (GFRP) used in sports products can be exposed to different in-service conditions such as large bending deformation and multiple impacts. Such loading conditions cause high local stresses and strains, which result in multiple modes of damage and fracture in composite laminates due to their inherent heterogeneity and non-trivial microstructure. In this paper, various damage modes in GFRP laminates are studied using experimental material characterisation, non-destructive micro-structural damage evaluation and numerical simulations. Experimental tests are carried out to characterise the behaviour of these materials under large-deflection bending. To obtain in-plane shear properties of laminates, tensile tests are performed using a full-field strain-measurement digital image correlation technique. X-ray micro computed tomography (Micro CT) is used to investigate internal material damage modes – delamination and cracking. Two-dimensional finite element (FE) models are implemented in the commercial code Abaqus to study the deformation behaviour and damage in GFRP. In these models, multiple layers of bilinear cohesive-zone elements are employed to study the onset and progression of inter-ply delamination and intra-ply fabric fracture of composite laminate, based on the X-ray Micro CT study. The developed numerical models are capable to simulate these features with their mechanisms as well as subsequent mode coupling observed in tests and Micro CT scanning. The obtained results of simulations are in agreement with experimental data.
Read full abstract