In the last decades, wing morphing structures have aroused great interest due to their capability to improve the aerodynamic efficiency of modern aircraft. DE actuators, also known as “artificial muscles” due to their ability to exhibit large actuation strains at high voltages, are suitable candidates for morphing applications. This paper focuses on the research and development of miniature dielectric elastomeric actuators for variable-thickness morphing wings. A conical elastomeric actuation configuration has been proposed, consisting of a VHB4910 dielectric membrane preloaded with a spring mechanism and constrained to a rigid circular ring. The mini-actuators are developed to be fixed in an actuation array, mounted to the wing skin. This new electromechanical actuation system is designed to be integrated on thin airfoil wings, where conventional morphing structures cannot be used, because of restricted mass and space requirements. By controlling the thickness distribution using the proposed actuators, we may be able to maintain and delay the location of the laminar-turbulent transit towards the trailing edge, promoting laminar flow over the wing surface. Experimental models and prototypes will be developed in the next phase of the research project for further investigations.