Abstract

The emerging demand for bioinspired soft robotics requires novel soft actuators whose performance exceeds conventional rigid ones. Dielectric elastomer actuators (DEAs) are a promising soft actuation technology with large actuation strain and fast response. Cone DEAs are one of the most widely adopted DEA configurations for their compact structure and large force/stroke output with several configuration variations developed in recent years. By driving at a resonant frequency, the cone DEAs show a significant amplification in their power outputs, which demonstrates their suitability for highly dynamic robotic applications. However, it is still unclear how the payload conditions could affect the power outputs of cone DEAs and no work has compared the output performance of different variations of cone configurations. In this article, by considering conical configuration DEAs with generalized dissipative payloads, we conduct an extensive study on the effects of payload conditions on the power outputs of the cone DEA family. Additionally, we benchmark the performance of different cone DEA configurations and illustrate the fundamental principles behind these output patterns. The findings reported in this article establish guidelines for designing high-performance cone DEA actuators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call