Abstract
For optimal performance, actuators designed for biologically-inspired robotics applications need to be capable of mimicking the key characteristics of natural musculoskeletal systems. These characteristics include a large output stroke, high energy density, antagonistic operation and passive compliance. The actuation properties of dielectric elastomer actuators (DEAs) make them viable for use as an artificial muscle technology. However, much like the musculoskeletal system, rigid structures are needed to couple the compliant DEA layers to a load. In this paper, a cone DEA design is developed as an antagonistic, multi-DOF actuator, viable for a variety for biologically-inspired robotics applications. The design has the advantage of maintaining pre-strain through a support structure without substantially lowering the overall mass-specific power density. Prototype cone DEAs have been fabricated with VHB 4910 acrylic elastomer and have characteristic dimensions of 49mm (strut length) and 60mm (DEA diameter). Multi-DOF kinematical outputs of the cone DEAs were measured using a custom 3D motion tracking system. Experimental tests of the prototypes demonstrate antagonistic linear (±10mm), rotational (±25°) and combined multi-DOF strokes. Overall, antagonistic cone DEAs are shown to produce a complex multi-DOF output from a mass-efficient support structure and thus are well suited for being exploited in biologically-inspired robotics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.