Lanthanides have seen rapid growth in the pharmaceutical and biomedical field, thus necessitating the development of hybrid metal–organic materials capable of exerting defined biological activities. Ternary hybrid lanthanide compounds were synthesized through reaction systems of Ln(III) (Ln = La, Nd, Eu) involving the antioxidant flavonoid chrysin (Chr) and 1,10-phenanhtroline (phen) under solvothermal conditions, thus leading to pure crystalline materials. The so-derived compounds were characterized physicochemically in the solid state through analytical (elemental analysis), spectroscopic (FT-IR, UV-visible, luminescence, ESI-MS, circular dichroism, 151Eu Mössbauer), magnetic susceptibility, and X-ray crystallographic techniques. The analytical and spectroscopic data corroborate the 3D structure of the mononuclear complex assemblies and are in line with theoretical calculations (Bond Valence Sum and Hirshfeld analysis), with their luminescence suggesting quenching on the flavonoid-phen electronic signature. Magnetic susceptibility data suggest potential correlations, which could be envisioned, supporting future functional sensors. At the biological level, the title compounds were investigated for their (a) ability to interact with bovine serum albumin and (b) antibacterial efficacy against Gram(−) (E. coli) and Gram(+) (S. aureus) bacteria, collectively revealing distinctly configured biological profiles and suggesting analogous applications in cellular (patho)physiologies.
Read full abstract