Abstract

An exploration of the synthetic and structural phase space of rare earth hybrid double perovskites A2B'BX6 (A = organocation, B' = M+, B = M3+, X = molecular bridging anion) that include X = NO3- and B' = alkali metal is reported, complementing earlier studies of the [Me4N]2[KB(NO3)6] (B = Am, Cm, La-Nd, Sm-Lu, Y) (Me4N = (CH3)4N+) compounds. In the present efforts, the synthetic phase space of these systems is explored by varying the identity of the alkali metal ion at the B'-site. Herein, we report three new series of the form [Me4N]2[B'B(NO3)6] (B = La-Nd, Sm-Gd; B' = Na, Rb, Cs). The early members of the Na-series crystallize in the trigonal space group R3̅ from La to Nd where a phase transition occurs in the phase between 273 and 300 K, going from R3̅ to the high-symmetry, cubic space group Fm3̅m. The preceding trigonal members of the Na-series also undergo phase transitions to cubic symmetry at temperatures above 300 K, establishing a decreasing trend in the phase-transition temperature. The remainder of the Na-series, as well as the Rb- and Cs-series, all crystallize in Fm3̅m at 300 K. The temperature-dependent phase behavior of the synthesized phases is studied via variable-temperature spectroscopic methods and high-resolution powder X-ray diffractometry. All phases were characterized via single-crystal and powder X-ray diffraction and Fourier transform infrared (FT-IR) and Raman spectroscopic methods. These results demonstrate the versatility of the perovskite structure type to include rare earth ions, nitrate ions, and a suite of alkali metal ions and serve as a foundation for the design of functional rare earth hybrid double perovskite materials such as those possessing useful multiferroic, optical, and magnetic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call