The survival and success of alien plant species is determined by species traits (i.e., invasiveness) and the characteristics of the habitats in the region of introduction (i.e., invasibility). However, little is known about species traits as related to habitat characteristics. We assessed the characteristics of successful invaders and the interaction of environmental factors and life-history traits for alien plant species. The vascular plants were recorded from 52 agricultural landscapes in Finland. We compared the traits of native and alien plant species with Fisher’s exact test and used a three table ordination analysis, RLQ analysis, to relate species traits to environmental conditions. Species were clustered according to their position on the RLQ axes, and the clusters were tested for phylogenetic independence. The successful alien plant species were associated with life form and preferences for moisture and nitrogen, but the trait composition varied according to the habitat type. Two RLQ axes explained 80.5% of the variation, and the species traits were significantly associated with environmental variables. The clustering showed that the occurrence of alien plant species in agricultural habitats was driven by invasion history, traits related to dispersal (dispersal type, seed mass) and habitat preferences, as well as environmental features, such as geographical location, temperature and the quality and disturbance regime of the habitats. All clusters were phylogenetically non-independent. Thus, the clusters of alien species comprised species of diverse taxonomic affinities, although, they shared the traits explaining their occurrence in particular habitats. This information is useful for understanding the link between species traits and the environmental conditions of the habitats, and complexity of the invasion process.
Read full abstract