Abstract Using the past to improve future predictions requires an understanding and quantification of the individual climate contributions to the observed climate change by aerosols and greenhouse gases (GHGs), which is hindered by large uncertainties in aerosol forcings and responses across climate models. To estimate historical aerosol responses, we apply detection and attribution methods to attribute a joint change in temperature and precipitation to forcings by combining signals of observed changes in tropical wet and dry regions, the interhemispheric temperature asymmetry, global mean temperature (GMT), and global mean land precipitation (GMLP). Fingerprints representing the climate response to aerosols (AERs) and the remaining external forcings (noAER; mostly GHG) are derived from large ensembles of historical single- and ALL-forcing simulations from three models in phase 6 of the Coupled Model Intercomparison Project and selected using a perfect model study. Results from an imperfect model study and a hydrological sensitivity analysis support combining our choice of temperature and precipitation fingerprints into a joint study. We find that diagnostics including temperature and precipitation slightly better constrain the noAER signal than diagnostics based purely on temperature or GMT-only and allow for the attribution of AER cooling (even when GMT is not included in the fingerprint). These results are robust across fingerprints from different climate models. Estimated contributions for AER and noAER agree with other published estimates including those from the most recent IPCC report. Finally, we attribute the best estimate of 0.46 K ([−0.86, −0.05] K) of aerosol-induced cooling and 1.63 K ([1.26, 2.00] K) of noAER warming in 2010–19 relative to 1850–1900 using the combined signals of GMT and GMLP. Significance Statement Aerosols are small liquid or solid airborne particles. They are predominantly the secondary result of emissions of aerosol precursor gases emitted via industrial or natural processes. While greenhouse gases warm the climate, aerosols can have a cooling effect on the climate system, thus offsetting some of the greenhouse gas–related warming. We expect greenhouse gas concentrations in the atmosphere to continue to increase, while aerosol concentrations are likely going to decline due to their impacts on human health. Our study uses observed temperature and precipitation changes to quantify how much aerosols have offset warming from past greenhouse gas emissions. This can help constrain future predictions of global warming.