The vertical structure of vegetation canopies creates micro-climates. However, the land components of most Earth System Models, including the Energy Exascale Earth System Model (E3SM), typically neglect vertical canopy structure by using a single layer big-leaf representation to simulate water, CO2, and energy exchanges between the land and the atmosphere. In this study, we developed a Multi-Layer Canopy Model for the E3SM Land Model to resolve the micro-climate created by vegetation canopies. The model developed in this study re-implements the CLM-ml_v1 to support heterogeneous computing architectures consisting of CPUs and GPUs and includes three additional optimization-based stomatal conductance models. The use of Portable, Extensible Toolkit for Scientific Computation provides a speedup of 25–50 times on a GPU relative to a CPU. The numerical implementation of the model was verified against CLM-ml_v1 for a month-long simulation using data from the Ameriflux US-University of Michigan Biological Station site. Model structural uncertainty was explored by performing control simulations for five stomatal conductance models that exclude and include the control of plant hydrodynamics (PHD) on photosynthesis. The bias in simulated sensible and latent heat fluxes was lower when PHD was accounted for in the model. Additionally, six idealized simulations were performed to study the impact of three environmental variables (i.e. air temperature, atmospheric CO2, and soil moisture) on canopy processes (i.e. net CO2 assimilation, leaf temperature, and leaf water potential). Increasing air temperature reduced net CO2 assimilation and increased air temperature. Net CO2 assimilation increased at higher atmospheric CO2, while decreasing soil moisture resulted in lower leaf water potential.