Abstract

Terrestrial water storage (TWS) is pivotal in understanding environmental dynamics, climate change, and human impacts. Despite the utility of land surface models, uncertainties persist in their parameterization schemes. This study employs GRACE (Gravity Recovery and Climate Experiment) satellite data to optimize the runoff parameterization scheme within the Common Land Model by a data assimilation and parameter optimization method. The optimization algorithm sets an adjustment factor that varies with time and space for runoff simulation and updates it along with the running of the land surface model. The evaluation reveals that there are improved correlation coefficients and reduced root mean square errors compared to GRACE observations. Independent assessments by using in situ river discharge observations demonstrate enhanced model performance, particularly in mountainous regions such as western North America. This study underscores the efficacy of integrating GRACE data to improve land surface model parameterization, offering more accurate predictions of TWS changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call