Additive manufacturing is the technology used in medical, industrial, or lifestyle applications. The scientific literature include works reporting various manufacturing parameters' influence on changes in additive manufacturing components' mechanical behavior, especially with fused filament fabrication (FFF). The changes in mechanical strength and toughness of FFF compared to injection molding parts were studied. In the study, the FFF and injection molded parts were aged in buffered saline solution in temperature of 37°C. The results show that by differentiating the orientation of the fibers during fabricating, it is possible to reach strength values similar to injection molded parts. Therefore, it was reported that the mechanical strength and toughness changed significantly after aging, and the FFF components lost strength more quickly than their injected alternatives. The research results can be useful during the fabrication of mechanically stable and biodegradable components, which can be more easily recycled than their injected alternatives when used with warmer temperatures and humidity. This article completes the present state of the art on the problem of environmental aging of parts produced from biodegradable materials. Especially, the research was related to the multilayer laminate structure.