Understanding the current water quality dynamics is necessary to ensure that ecological and sociocultural services are provided to the population and the natural environment. Water quality monitoring of lakes is usually performed with in situ measurements; however, these are costly, time consuming, laborious, and can have limited spatial coverage. Nowadays, remote sensing offers an alternative source of data to be used in water quality monitoring; by applying appropriate algorithms to satellite imagery, it is possible to retrieve water quality parameters. The use of global remote sensing water quality products increased in the last decade, and there are a multitude of products available from various databases. However, in Latin America, studies on the inter-comparison of the applicability of these products for water quality monitoring is rather scarce. Therefore, in this study, global remote sensing products estimating various water quality parameters were explored on Lake Titicaca and compared with each other and sources of data. Two products, the Copernicus Global Land Service (CGLS) and the European Space Agency Lakes Climate Change Initiative (ESA-CCI), were evaluated through a comparison with in situ measurements and with each other for analysis of the spatiotemporal variability of lake surface water temperature (LSWT), turbidity, and chlorophyll-a. The results of this study showed that the two products had limited accuracy when compared to in situ data; however, remarkable performance was observed in terms of exhibiting spatiotemporal variability of the WQ parameters. The ESA-CCI LSWT product performed better than the CGLS product in estimating LSWT, while the two products were on par with each other in terms of demonstrating the spatiotemporal patterns of the WQ parameters. Overall, these two global remote sensing water quality products can be used to monitor Lake Titicaca, currently with limited accuracy, but they can be improved with precise pixel identification, accurate optical water type definition, and better algorithms for atmospheric correction and retrieval. This highlights the need for the improvement of global WQ products to fit local conditions and make the products more useful for decision-making at the appropriate scale.
Read full abstract