Abstract

Lake surface water temperature (LSWT) plays a crucial role in assessing the health of aquatic ecosystems. Variations in LSWT can significantly impact the physical, chemical, and biological processes within lakes. This study investigates the long-term changes in surface water temperature of the Dongting Lake, China. The LSWT is retrieved using Landsat thermal infrared imageries from 1988 to 2022 and validated with in situ observations, and the change characteristics of LSWT and near-surface air temperature (NSAT) as well as the spatial distribution characteristics of LSWT are analyzed. Additionally, the contribution rates of different meteorological factors to LSWT are quantified. The results show that the accuracy assessment of satellite-derived temperatures indicates a Nash-Sutcliffe efficiency coefficient (NSE) of 0.961, suggesting an accurate retrieval of water temperature. From 1988 to 2022, both the annual average LSWT and NSAT of Dongting Lake exhibit an increasing trend, with similar rates of warming. They both undergo a mutation in 1997 and have the main periods on the 11-year and 4-year time scales. The changes in NSAT emerge as one of the important factors contributing to variations in LSWT. Among the multiple meteorological factors, NSAT exhibits a significant correlation with LSWT (R = 0.822, α < 0.01). Furthermore, NSAT accounts for the highest contribution rate to LSWT, amounting to 67.5%. The distribution of LSWT within Dongting Lake exhibits spatial variations, with higher LSWT observed on the west part compared to the east part during summer, while lower LSWT occurs on the west part during winter. The findings of this study can provide a scientific understanding for the long-term thermal regimes of lakes and help advance sustainable lake management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.