Global atmospheric sources of lead have increased more than 100-fold over the past century as a result of deforestation, coal combustion, ore smelting and leaded petroleum. Lead compounds generally accumulate in depositional areas across the globe where, due to low solubility and relative freedom from microbial degradation, the history of their inputs is preserved. In lakes there is rapid deposition and often little bioturbation of lead, resulting in an excellent depositional history of changes in both natural and anthropogenic sources. The objective of this study was to use sediments from a regionally bounded set of lakes to provide an indication of the rates of environmental inputs of lead whilst taking into account differences of trophic state and lead exposure between lakes. Intact sediment gravity cores were collected from 13 Rotorua lakes in North Island of New Zealand between March 2006 and January 2007. Cores penetrated sediments to a depth of 16–30 cm and contained volcanic tephra from the 1886 AD Tarawera eruption. The upper depth of the Tarawera tephra enabled prescription of a date for the associated depth in the core (120 years). Each core showed a sub-surface peak in lead concentration above the Tarawera tephra which was contemporaneous with the peak use of lead alkyl as a petroleum additive in New Zealand. An 8 m piston core was taken in the largest of the lakes, Lake Rotorua, in March 2007. The lake is antipodal to the pre-industrial sources of atmospheric lead but still shows increasing lead concentrations from <2 up to 3.5 μg g − 1 between the Whakatane eruption (5530 ± 60 cal. yr BP) and the Tarawera eruption. Peaks in lead concentration in Lake Rotorua are associated with volcanic tephras, but are small compared with those arising from recent anthropogenic-derived lead deposition. Our results show that diagenetic processes associated with iron, manganese and sulfate oxidation-reduction, and sulfide precipitation, act to smooth distributions of lead from anthropogenic sources in the lake sediments. The extent of this smoothing can be related to changes in sulfate availability and reduction in sulfide driven by differences in trophic status amongst the lakes. Greatest lead mobilisation occurs in mesotrophic lakes during seasonal anoxia as iron and manganese are released to the porewater, allowing upward migration of lead towards the sediment–water interface. This lead mobilisation can only occur if sulfides are not present. The sub-surface peak in lead concentrations in lake sediments ascribed to lead alkyl in petroleum persists despite the diagenetic processes acting to disperse lead within the sediments and into the overlying water.
Read full abstract