The aim of the study is to develop a spatial electromechanical model of a variable-length link for use in telescopic manipulators, anthropomorphic robots, exoskeletons, and in studying the human musculoskeletal system. The proposed link model has two massive absolutely solid sections at the ends and a weightless section of variable length located between them. The study was carried out using the methods of theoretical mechanics, electromechanics, mathematical modeling, engineering design, numerical methods for solving systems of ordinary differential equations, control theory, nonlinear dynamics, experimental methods, and empirical data on the biomechanical properties of the human musculoskeletal system. The reliability of the obtained results is substantiated by a rigorous use of the above-mentioned methods. As a result of the study, a system of Lagrange-Maxwell differential equations was written, and an electromechanical model of an anthropomorphic system was developed in the Matlab Simulink software package. With the specified geometric and inertial parameters of a variable-length link corresponding to an average person's leg lower part and the time corresponding to the single-support motion phase, the electric motors and reducing gears implementing the human musculoskeletal system link's biomechanical motion fragment are selected. All of the selected motors have a sufficient operating parameters margin. The trajectories of all generalized coordinates along which the anthropomorphic system performs its necessary motion are determined. The mechanism load diagrams are obtained. The control system for the motors is synthesized, and the positioning error is evaluated. The novelty of the approach is that the newly developed electromechanical models of controlled variable-length links have a wide range of applying the obtained results and can be used in designing anthropomorphic robots and comfortable new-generation exoskeletons. Thus, the electromechanical model of a variable-length link with the parameters corresponding to the average person's leg lower part has been developed. The electric drives and transmissions able to implement a motion close to the anthropomorphic one have been selected; its implementation has been demonstrated, and the numerical calculation results are given.
Read full abstract