In the sorghum/aphid/ladybeetle ecosystem found in the Texas High Plains Region of the United States, we found that the corn leaf aphid, Rhopalosiphum maidis (Fitch), is a key aphid species that provides a critical early-season food source for native coccinellids. From 1988 to 2000 data on the seasonal abundance of sorghum-infesting aphids and ladybeetles were collected from a total of 21 irrigated and 12 rain-fed grain sorghum fields. The data indicated that successful biological control of the greenbug by coccinellids is normally dependent on early-season colonization of the sorghum field by corn leaf aphids. When corn leaf aphids exceeded 100/plant before sorghum boot stage greenbugs never exceeded 125 aphids/plant. In all cases where greenbugs were found in densities that would cause economic damage to sorghum (>250/plant), corn leaf aphids reached a density of 100 or more per plant after sorghum reached the boot stage. In irrigated fields, the first record of coccinellid eggs and peak coccinellid abundance were positively and significantly (p = 0.05) correlated to the day of the year when corn leaf aphids reached or exceeded a minimum of 100/plant and corn leaf aphid peak abundance in both irrigated and rainfed fields. On the other hand, greenbug peak abundance was significantly correlated only to coccinellid peak abundance in irrigated fields. Regression analyses indicated that in paired analyses of irrigated and rain-fed sorghum fields, an increase of one aphid at time t, resulted in an increase in coccinellid peak abundance from 0.024 to 0.025 per 15 m of row at time t + 2 depending on aphid species, if corn leaf aphids reached a level of 100 or more per plant by sorghum boot stage and irrigation parameters. We concluded that corn leaf aphids are an important early-season food source for predaceous coccinellids, drawing these predators into the fields where they feed on the aphids and deposit eggs, engendering a captive larval population that is present when greenbug first begin to enter the field later in the season.
Read full abstract