Abstract

Landscape complexity influences soybean aphid suppression by generalist predators in North America, but the role of adjacent habitats as sources of these predators has not been studied directly. We quantified movement of aphidophagous predators between soybean and five adjacent habitats common in Manitoba using bi-directional Malaise traps. To test the contribution of predators from neighboring habitats to soybean aphid suppression, we performed experimental manipulations in adjacent soybean and alfalfa fields and monitored the movement of sevenspotted lady beetles, Coccinella septempunctata, using mark-release-recapture experiments. The identity of adjacent habitats affected the net movement of predators into soybean. The most abundant predators were hover flies (Diptera: Syrphidae), moving from woodlands to soybean. Similar (but non-significant) trends were found for lady beetles, minute pirate bugs, and green and brown lacewings. There was also a net movement of hover flies and green lacewings from soybean to canola. Lady beetles showed higher bidirectional movement in alfalfa and wheat borders than in woodland and canola borders in a high lady beetle abundance year. Soybean aphid populations in predator exclusion cages were 21- to 122- fold higher than populations exposed to predators, both in alfalfa and soybean fields. Aerial predators provide similar levels of aphid suppression as aerial and epigeal predators combined. Mark-release-recapture experiments showed high dispersal of C. septempunctata between soybean and alfalfa, with a net movement towards alfalfa, probably due to the lack of aphids in soybean. These results demonstrate that predator assemblages from both soybeans and alfalfa can suppress soybean aphids. Our findings indicate that the type of adjacent habitat and predator identity affect the directionality of predator movement into soybean. This study suggests that information on predator movement can be used to design the distribution of crops and natural habitats in agricultural landscapes that maximize pest control services.

Highlights

  • Most natural enemies change habitats during part of their life cycle to obtain food, mates, and reproductive sites [1], and associated pest control services depend largely on the movement of these predators through multiple habitats in agricultural landscapes [2,3]

  • There was no difference between overall emigration and immigration of total predators between soybean and adjacent habitats (14.72 ± 2.58 versus 12.78 ± 1.73 individuals / trap / day, respectively; n = 106), but movement direction varied among field borders

  • Our study contributes the first empirical evidence from North America that suggests that movement of predators into crops depends on both predator identity and the type of adjacent habitat, confirming patterns found in other regions [4,5,6,7, 24]

Read more

Summary

Introduction

Most natural enemies change habitats during part of their life cycle to obtain food, mates, and reproductive sites [1], and associated pest control services depend largely on the movement of these predators through multiple habitats in agricultural landscapes [2,3]. Movement of aphidophagous predators between neighboring agricultural habitats design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.