The in vitro embryo production industry in the actual world presents some difficulties related to low embryonic production rates, a problem that could be associated with in vitro culture conditions that differed from the in vivo (oviductal) conditions, mainly related to cytoplasmic lipid accumulation. L-carnitine is known as a modulator of β-oxidation in the developing embryo, as it has been demonstrated that it improves embryo quality without affecting the in vitro embryo production rate. The aim of the present work was to evaluate the effect of L-carnitine supplemented during the in vitro maturation and culture processes on the implantation rate of in vitro produced embryos. Supplementation with 3.8mM of L-carnitine was used during in vitro maturation, and later, during late in vitro culture, it was added at 1.5mM. A control group contained no L-carnitine supplementation. Bovine oocytes obtained by ultrasound-guided follicle aspiration from healthy Bos taurus indicus cows were matured, fertilized and cultured in vitro. Multiparous F1 (Bos taurus taurus × Bos taurus indicus) cows were used as recipients. Overall, 460 oocytes were processed in three independent replicates from in vitro maturation until day 8 of the in vitro culture. No significant difference was found between treatments of in vitro embryo production. However, pregnancy rate at days 45 and 72 was significantly higher in blastocysts derived from L-carnitine treatment (31.55 ± 9.78%) compared to the control group (18.68 ± 6.31%). In conclusion, addition of L-carnitine at 3.8mM and 1.5mM in the maturation, and culture medium after day 3 of in vitro production process, significantly improved pregnancy rate after embryo transfer.
Read full abstract