An unexplored aspect of L-band microwave emission is the impact of soil moisture and soil temperature (SMST) profile dynamics on diurnal brightness temperature ( T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> ) signatures of frozen soil. This study investigates this effect by comparing the T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> simulations of layered ( T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B,l</sub> ) and uniform ( T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B,u</sub> ) soils using a newly developed integrated land emission model. The multilayer Wilheit model and the single-layer Fresnel model are adopted to compute the smooth soil reflectivity for the layered and uniform soils, respectively. A four-phase dielectric mixing model is used to calculate the soil permittivity ( ε <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ). A data set of concurrent ELBARA-III T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> and SMST profile measurements performed in a seasonally frozen Tibetan meadow ecosystem is used for the analysis. The simulated T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B,l</sub> considering SMST profile information captures well the ELBARA-III measurements with low biases (≤6 K) and high correlations ( R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ≥ 0.88). T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B,u</sub> produced based on the Fresnel model using the soil moisture of 2.5 cm is more consistent with the T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B,l</sub> . The sensitivity test of averaging SMST profile below 2.5 cm leads to maximum differences of 2 K in T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B,l</sub> simulations, indicating that the T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> variations are primary dominated by the SMST dynamics at the surface layer. A sensitivity test of the Wilheit model to different ε <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> parameterizations shows that the dielectric model of Zhang et al. is comparable to the four-phase dielectric model in simulating T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B,l</sub> , while the Mironov et al. 's model demonstrates larger biases for frozen soil with, on average, 2.2% clay content, 49.7% sand content, and a bulk density of 1 g·cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-3</sup> .
Read full abstract