To commission and analyze a new low energy high dose rate electronic brachytherapy system. Half-value layer (HVL), absolute dose output, beam profiles, and insert factors of an electronic brachytherapy system (EBT) were measured and analyzed. A thimble-shaped parallel-plate ionization chamber was utilized for HVL, absolute output, and insert factor determinations. HVL measurements of the 69.5 keV beam of EBT were conducted using thin aluminum foils in narrow beam geometry. In this setup, the aluminum filters were positioned at a distance of 30 cm from tip of the EBT device and 30 cm from the ion chamber. Absolute calibration of this X-ray beam was carried out based on the AAPM Task Group 61 (TG61) report. Beam profiles and depth ionization curves were measured and analyzed using radiochromic films, a professional scanner, and a scientific software package. The relative output factors of the five standard inserts of this device (10, 15, 20, 25, and 30 mm in diameter) were determined employing the ion chamber in air. Finally, a secondary dose calculation system was developed in a spreadsheet. HVL of the X-ray beam of EBT was measured to be 1.61 mmAl. For TG61-based calibration of this low energy kV beam employing the ion chamber at the SSD of 6 cm, it was determined that for this system Pion, Ppol, backscatter factor, ratio of mass energy absorption coefficient, inverse square correction from the surface to the effective point of measurement, and end-effect are 1.009, 0.995, 1.121, 1.017, 1.061, and 0.997, respectively. Measuring the PDD of this beam was proved difficult. Per TG61 recommendations, PDD values from BJR supplement #25 were employed for translating the measured output at the surface to the depth of 3 mm in tissue. The PDD values from BJR were in agreement with those supplied by the manufacturer to within <0.5%. The absolute dose at the depth of 3 mm was therefore established to be 3.1 Gy, for when the EBT system was programmed to deliver 3 Gy. This agreement level was deemed acceptable for the low-energy and small SSD of this device. Beam profiles showed a relatively flat beam (<5%) with small (1 mm) penumbra. Insert factors varied from 0.95 to 1.01 for the five standard inserts of this EBT device in relations to the 30 mm insert output value. Radiation physics parameters of an EBT X-ray unit were measured to match those claimed by the manufacturer to an accuracy of better than 5%, except HVL. Our measured HVL was 1.61 mm Al, whereas that indicated by the manufacturer is 1.83 mm Al. This discrepancy in HVL has a 0.3% effect on the NK value used for this chamber and less than 2% impact on the PDD employed for determining the absorbed radiation dose at depth. Reproducibility of the radiation beam of this device was on the order of less than 0.3%.
Read full abstract