Abstract

This study investigated the variations of the dose and dose distribution in a small-animal irradiation due to the photon beam energy and presence of inhomogeneity. Based on the same mouse computed tomography image set, three Monte Carlo phantoms namely, inhomogeneous, homogeneous and bone-tissue phantoms were used in this study. These phantoms were generated by overriding the relative electron density of no voxel (inhomogeneous), all voxel (homogeneous) and the bone voxel (bone-tissue) to one. 360° photon arcs with beam energies of 50–1250kV were used in mouse irradiations. Doses in the above phantoms were calculated using the EGSnrc-based DOSXYZnrc code through the DOSCTP. It was found that the dose conformity increased with the increase of the photon beam energy from the kV to MV range. For the inhomogeneous mouse phantom, increasing the photon beam energy from 50kV to 1250kV increased about 21 times the dose deposited at the isocenter. For the bone dose enhancement, the mean dose was 1.4 times higher when the bone inhomogeneity was not neglected using the 50kV photon beams in the mouse irradiation. Bone dose enhancement affecting the mean dose in the mouse irradiation can be found in the photon beams with energy range of 50–200kV, and the dose enhancement decreases with an increase of the beam energy. Moreover, the MV photon beam has a higher dose at the isocenter, and a better dose conformity compared to the kV beam.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.