In this paper, Runge Kutta method of order 4 is used to study the electrical circuits designs through past, intermediate and present voltages. When integrating differential equations with Runge Kutta method of order 4, a constant step size (ℎ) is used until a testing procedure confirms that the discontinuity occurs in the present integration interval. This step size function calculations would take place at the end of the functional calculations, but before the dependent variables were updated. Runge Kutta methods along with convolution are given by array interpretation (Butcher matrix) representation, this leads to identify the equilibrium state. The input parameters indicate the voltage coefficient controlled by current sources and measures it a random periodic time. The output parameters provide stable independent values and calculated from past voltage and current values. Finally solutions are compared with exact values and RK method of order 4 along with Heun, Midpoint and Taylors’s method with various ℎ values.
Read full abstract