Abstract

Variable-step (VS) 4-stage k-step Hermite---Birkhoff (HB) methods of order p = (k + 2), p = 9, 10, denoted by HB (p), are constructed as a combination of linear k-step methods of order (p ? 2) and a diagonally implicit one-step 4-stage Runge---Kutta method of order 3 (DIRK3) for solving stiff ordinary differential equations. Forcing a Taylor expansion of the numerical solution to agree with an expansion of the true solution leads to multistep and Runge---Kutta type order conditions which are reorganized into linear confluent Vandermonde-type systems. This approach allows us to develop L(a)-stable methods of order up to 11 with a > 63°. Fast algorithms are developed for solving these systems in O (p2) operations to obtain HB interpolation polynomials in terms of generalized Lagrange basis functions. The stepsizes of these methods are controlled by a local error estimator. HB(p) of order p = 9 and 10 compare favorably with existing Cash modified extended backward differentiation formulae of order 7 and 8, MEBDF(7-8) and Ebadi et al. hybrid backward differentiation formulae of order 10 and 12, HBDF(10-12) in solving problems often used to test higher order stiff ODE solvers on the basis of CPU time and error at the endpoint of the integration interval.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call