Anatomy education in the medical school curriculum has encountered considerable challenges during the last decade. The exponential growth of medical science has necessitated a review of the classical ways to teach anatomy to shorten the time students spend dissecting, allowing them to acquire critical, new knowledge in other disciplines. Augmented and mixed reality technologies have developed tremendously during the last few years, offering a wide variety of possibilities to deliver anatomy education to medical students. Here, we provide a methodology to develop, deliver, and assess an anatomy laboratory course using augmented reality applications. We suggest a novel approach, based on Microsoft® HoloLens II, to develop systematic sequences of holograms to reproduce human dissection. The laboratory sessions are prepared before classes and include a series of holograms revealing sequential layers of the human body, isolated structures, or a combination of structures forming a system or a functional unit. The in-class activities are conducted either as one group of students (n = 8-9) with a leading facilitator or small groups of students (n = 4) with facilitators (n = 4) joining the groups for discussion. The same or different sessions may be used for the assessment of students' knowledge. Although currently in its infancy, the use of holograms will soon become a substantial part of medical education. Currently, several companies are offering a range of useful learning platforms, from anatomy education to patient encounters. By describing the holographic program at our institution, we hope to provide a roadmap for other institutions looking to implement a systematic approach to teaching anatomy through holographic dissection. This approach has several benefits, including a sequential 3D presentation of the human body with varying layers of dissection, demonstrations of facilitator-selected three-dimensional (3D) anatomical regions or specific body units, and the option for classroom or remote facilitation, with the ability for students to review each session individually.
Read full abstract