Machine learning (ML) models are a leading analytical technique used to monitor, map and quantify land use and land cover (LULC) and its change over time. Models such as k-nearest neighbour (kNN), support vector machines (SVM), artificial neural networks (ANN), and random forests (RF) have been used effectively to classify LULC types at a range of geographical scales. However, ML models have not been widely applied in African tropical regions due to methodological challenges that arise from relying on the coarse-resolution satellite images available for these areas. In this study, we compared the performance of four ML algorithms (kNN, SVM, ANN and RF) applied to LULC monitoring within the Mayo Rey department, North Province, Cameroon. We used satellite data from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) combined with 8 Operational Land Imager (OLI) images of northern Cameroon for November 2000 and November 2020. Our results showed that all four classification algorithms produced relatively high accuracy (overall classification accuracy >80%), with the RF model (> 90% classification accuracy) outperforming the kNN, SVM, and ANN models. We found that approximately 7% of all forested areas (dense forest and woody savanna) were converted to other land cover types between 2000 and 2020; this forest loss is particularly associated with an expansion of both croplands and built-up areas. Our study represents a novel application and comparison of statistical and ML approaches to LULC monitoring using coarse-resolution satellite images in an African tropical forest and savanna setting. The resulting land cover maps serve as an important baseline that will be useful to the Cameroon government for policy development, conservation planning, urban planning, and deforestation and agricultural monitoring.
Read full abstract