Abstract

In this study, the predictive power of three different machine learning (ML)-based approaches, namely, multi-gene genetic programming (MGGP), M5 model trees (M5Tree), and K-nearest neighbor algorithm (KNN), for long-term monthly reference evapotranspiration (ET0) prediction were investigated. The input data consist of monthly solar radiation (Rs), maximum air temperature (Tmax), and wind speed (Ws) derived from 163 meteorological stations in Turkey. Different input combinations were created and analyzed. The model's performance was evaluated using criteria such as Nash-Sutcliffe efficiency, Kling-Gupta efficiency, relative root mean squared error, mean absolute percentage error, and determination coefficient. Moreover, Taylor, radar, and boxplot diagrams were created. It was determined that the MGGP model outperformed both the M5Tree and the KNN models. The equation obtained from the MGGP model, for the best-performed combination of Rs-Tmax-Ws, was presented. The best weather conditions were obtained as 0.029 to 31.814MJ/m2, - 5.8 to 45.7°C, and 0.140 to 5.086m/s for Rs, Tmax, and Ws, respectively. It was also found that the Rs was the most potent input variable for ET0 estimation while Ws was the weakest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.