IntroductionExcessive physical shoulder musculoskeletal loading (muscle and joint contact forces), known to contribute to work-related shoulder disorders, can be reduced by a passive shoulder exoskeleton during quasi-static tasks. However, its effect on neighboring joints i.e. elbow, lower back, hip, and knee and its effect on joint contact forces have not been investigated. Furthermore, the effect of the exoskeleton's assistance versus movement adaptation when wearing the exoskeleton on musculoskeletal loading remains unexplored. Methods3D motion capture and ground reaction forces were measured while 16 participants performed 5 simulated occupational tasks with and without the exoskeleton. A musculoskeletal modeling workflow was used to calculate musculoskeletal loading. Shoulder muscle fatigue was quantified using surface EMG. In addition, exoskeletons usability was quantified using the system usability scale. ResultsWhen wearing the passive shoulder exoskeleton, shoulder and elbow musculoskeletal loading decreased during the high lift and overhead wiring task, without increasing the musculoskeletal load at the back, hip and knee. In contrast, musculoskeletal loading in the shoulder, as well as in the knee increased while lifting a box from the ground to knee height and from elbow height to shoulder height. When wearing the exoskeleton, muscle activity of the Trapezius descendens, Deltoideus medius and Biceps brachii were reduced during the high lift. ConclusionThe passive shoulder exoskeleton reduces musculoskeletal loading in the lower back, shoulder and elbow during simulated occupational tasks above shoulder height. In contrast, for tasks below shoulder height, the use of the exoskeleton needs to be critically reviewed to avoid increased musculoskeletal loading also in neighboring joints due to altered movement execution when wearing the exoskeleton.
Read full abstract