Let G be a finite group. The real genusρ(G) is the minimum algebraic genus of any compact bordered Klein surface on which G acts. We classify the large groups of real genus p + 1, that is, the groups such that |G| ≥ 3(g - 1), where the genus action of G is on a bordered surface of genus g = p + 1. The group G must belong to one of four infinite families. In addition, we determine the order of the largest automorphism group of a surface of genus g for all g such that g = p + 1, where p is a prime.
Read full abstract