Abstract
Every finite group G acts as an automorphism group of some non-orientable Klein surfaces without boundary. The minimal genus of these surfaces is called the symmetric crosscap number and denoted by [Formula: see text]. It is known that 3 cannot be the symmetric crosscap number of a group. Conversely, it is also known that all integers that do not belong to nine classes modulo 144 are the symmetric crosscap number of some group. Here we obtain infinitely many groups whose symmetric crosscap number belong to each one of six of these classes. This result supports the conjecture that 3 is the unique integer which is not the symmetric crosscap number of a group. On the other hand, there are infinitely many groups with symmetric crosscap number 1 or 2. For g > 2 the number of groups G with [Formula: see text] is finite. The value of [Formula: see text] is known when G belongs to certain families of groups. In particular, if o(G) < 32, [Formula: see text] is known for all except thirteen groups. In this work we obtain it for these groups by means of a one-by-one analysis. Finally we obtain the least genus greater than two for those exceptional groups whose symmetric crosscap number is 1 or 2.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have